Vacancy diffusion and coalescence in graphene directed by defect strain fields.

نویسندگان

  • Thomas Trevethan
  • Christopher D Latham
  • Malcolm I Heggie
  • Patrick R Briddon
  • Mark J Rayson
چکیده

The formation of extended defects in graphene from the coalescence of individual mobile vacancies can significantly alter its mechanical, electrical and chemical properties. We present the results of ab initio simulations which demonstrate that the strain created by multi-vacancy complexes in graphene determine their overall growth morphology when formed from the coalescence of individual mobile lattice vacancies. Using density functional theory, we map out the potential energy surface for the motion of mono-vacancies in the vicinity of multi-vacancy defects. The inhomogeneous bond strain created by the multi-vacancy complexes strongly biases the activation energy barriers for single vacancy motion over a wide area. Kinetic Monte Carlo simulations based on rates from ab initio derived activation energies are performed to investigate the dynamical evolution of single vacancies in these strain fields. The resultant coalescence processes reveal that the dominant morphology of multi-vacancy complexes will consist of vacancy lines running in the two primary crystallographic directions, and that more thermodynamically stable structures, such as holes, are kinetically inaccessible from mono-vacancy aggregation alone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Curvature on the Mechanical Properties of Graphene: A Density Functional Tight-binding Approach

Due to the high cost of experimental analyses, researchers used atomistic modeling methods for predicting the mechanical behavior of the materials in the fields of nanotechnology. In the pre-sent study the Self-Consistent Charge Density Functional Tight-Binding (SCC-DFTB) was used to calculate Young's moduli and average potential energy of the straight and curved graphenes with different curvat...

متن کامل

Diffusion, coalescence, and reconstruction of vacancy defects in graphene layers.

Diffusion, coalescence, and reconstruction of vacancy defects in graphene layers are investigated by tight-binding molecular dynamics (TBMD) simulations and by first principles total energy calculations. It is observed in the TBMD simulations that two single vacancies coalesce into a 5-8-5 double vacancy at the temperature of 3000 K, and it is further reconstructed into a new defect structure, ...

متن کامل

Effect of Defects on Mechanical Properties of Graphene under Shear Loading Using Molecular Dynamic Simulation

Graphene sheet including single vacancy, double vacancy and Stone-Wales with armchair and zigzag structure was simulated using molecular dynamics simulation. The effect of defects on shear’s modulus, shear strength and fracture  strain was investigated. Results showed that these shear properties reduce when the degrees of all kinds of defects increase. The dangling bond in SV and DV defected gr...

متن کامل

Influence of the Vacancies on the Buckling Behavior of a Single–Layered Graphene Nanosheet

Graphene is a new class of two-dimensional carbon nanostructure, which holds great promise for the vast applications in many technological fields. It would be one of the prominent new materials for the next generation nano-electronic devices. In this paper the influence of various vacancy defects on the critical buckling load of a single-layered graphene nanosheet is investigated. The nanosheet...

متن کامل

Vibration Behavior of Nanocomposite Plate Reinforced by Pristine and Defective Graphene Sheets; an Analytical Approach

Free vibration characteristics of polymer composite plates reinforced by graphene nanosheets employing the Eringen nonlocal elasticity theory were investigated. Theoretical formulations are derived based on Hamilton’s principle implementing linear orthotropic constitutive equations of lamina while the behavior of nanostructure points affected by all other nonlocal points is also taken into acco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 5  شماره 

صفحات  -

تاریخ انتشار 2014